
Statistical and Neural Machine 

Translation

Josef van Genabith

Josef.van_Genabith@dfki.de

BALTIC-HLT 2016

Riga, Latvia

October 6th, 2016



Context: WMT 2016

 Neural MT won ¾ off all shared tasks

 Against strong state-of-the art: PB-SMT

 Honed and optimized over 15 years

 SMT > 25 years old

 NMT new kid on the block, about 2 years old …



 Human languages are:

 Elegant

 Efficient 

 Flexible

 Complex

 One word/sentence may mean many things

 Many ways of saying the same thing

 Meaning depends on context

 Literal and figurative language (metaphor)

 Language and culture (different ways of 

conceptualising the same thing)

 Word order

 Morphology

 …

Language
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 Language is complex 

 We cannot compute it exactly

 We tried: rule-based LT  …

 What do we do?

 Machine Learning

 Learns from data

 Approximate solution  not perfect

Robust

Scalable 

Language is Complex
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Story of Language Technology

 Story of Machine Translation

 Rule-based direct word based, transfer based

 Statistical I Machine Learning I, IBM, PB-SMT

 Statistical II Machine Learning II: NMT, Deep Learning

 Systems Engineering

 Machine Learning

 Story is partial and biased



The Journey
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Rule-based Machine Translation (RBMT)
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Rule-based Machine Translation (RBMT)
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Rule-based Machine Translation I

 Translate word by word: “direct translation”

 Do a little bit of analysis of local source context

 Maybe a little local re-ordering in target (e.g. French 

adjectives tend to follow noun)

 Requires very large bilingual dictionary with rules of how to 

translate each word
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Rule-based Machine Translation I
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From: Jurafsky & Martin II



Rule-based Machine Translation I

 10s of thousands of manually constructed entries with rules

 Systran (kind off) and other early commercial systems

 Interesting: contributes to linguistic knowledge

 Need highly skilled experts

 Time consuming & expensive

 Rule interaction hard to predict

 Long range phenomena hard to capture

 Generalisations hard to capture
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Rule-based Machine Translation I

 Long range phenomena hard to capture:

EN: Google will invest in self-driving cars
DE: Google wird in selbst fahrende Autos investieren

EN: Reuters said IBM bought Lotus yesterday

JA: Reuters yesterday IBM Lotus bought said

 Need not just local but global information

 some global (syntactic/semantic) analysis
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Rule-based Machine Translation II
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Rule-based Machine Translation II

EN: He adores listening to music SVO

JA: He music to listening adores SOV
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Rule-based Machine Translation II

EN: He adores listening to music
JA: He music to listening adores
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From: Jurafsky & Martin II



Rule-based Machine Translation II

EN: He adores listening to music
JA: He music to listening adores

BALTIC-HLT-2016: Statistical and Neural MT 20Josef.van_Genabith@dfki.de

From: Jurafsky & Martin II

1. VB → PRP VB1 VB2       VB → PRP VB2 VB1

2. VB2 → VB TO                 VB2 → TO VB

3. TO → TO NN                  TO → NN TO



Rule-based Machine Translation II

 Need a lot of resources for transfer-based MT:

 Analysis/generation lexica and grammars, as well as parsing

and generation engines for source and target

 Transfer rule sets and a transfer engine for any two languages 

you want to translate between 𝑛 × (𝑛 − 1)

 Interesting: strong contribution to linguistic knowledge

 Time consuming and expensive to hand-craft (… learn …)

 Not easy to achieve good coverage

 Complex phenomena

 Large rule sets

 Difficult to manage rule interactions



Statistical MT (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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NULL Mary did not slap the green witch 

Maria no daba una bofetada a la bruja verde



Statistical (Machine Learning) I
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Statistical (Machine Learning) I

BALTIC-HLT-2016: Statistical and Neural MT 27Josef.van_Genabith@dfki.de

NULL Mary did not slap the green witch 

Maria no daba una bofetada a la bruja verde

Mary  not slap slap slap the green witch



Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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NULL Mary did not slap          the    green witch 

Maria no daba una bofetada a la bruja verde

1, 3, 4, 4, 4, 0, 5, 7, 6



Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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 IBM Models

 Word based SMT

 Master class in statistical modeling

 Its amazing that you can learn this from raw data: bi-text!

 Expectation Maximization (EM)

 Then all based on statistical decision theory

Statistical (Machine Learning) I
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 What is “wrong” with this?

 Local decisions 

 Lots of massive independence assumptions

 Not warranted by the data …: non-local phenomena

 Reordering is weak …

 OOVs …

 … lots more 

 Word salad …

Statistical (Machine Learning) I
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Statistical (Machine Learning) I
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Statistical MT (Machine Learning) I.1
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Statistical (Machine Learning) I.1
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Statistical (Machine Learning) I.1
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Statistical (Machine Learning) I.1
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Statistical (Machine Learning) I.1
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Statistical (Machine Learning) I.1
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Statistical (Machine Learning) I.1
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Statistical (Machine Learning) I.1
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 A modern PB-SMT system can have many components:

Phrase translation model (for each translation direction)

Reordering model

Language model

Lexical translation models (for each direction)

Length model

Segmentation model 

Many more …

 5 – 15 components …

Statistical (Machine Learning) I.1
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 What’s cool about PB-SMT:

 One of the most successful LTs to date

 Brought MT into our daily lives

 And into professional translation workflows: post-editing 

MT output

 Language agnostic, all you need is training data

 Works well for many language pairs

 …

Statistical (Machine Learning) I.1
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 What’s not so cool about PB-SMT:

 Works better for some language pairs than others

 Morphologically rich languages, OOVs, …

 Massive independence assumptions

 Makes local decisions

 Reordering pretty bad

 Based on very heterogeneous technology stacks

 Components individually estimated

 Not jointly optimized against same loss function: 

translation quality …!

Statistical (Machine Learning) I.1
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 heterogeneous technology stacks: estimated independently, 

sometimes using heuristics and different data

 Alignment: expectation maximization (EM) and HMMs (GIZA++)

 Phrase extraction and scoring: based on alignment, heuristics

(grow-diag-final …), MLE scoring

 Lexical translation probabilities: alignment and MLE scoring

 Re-ordering based on alignment positions and MLE

 LM: count based (different ways of smoothing and back-off), often 

using supplementary data

 Top level log-linear combination of feature functions setting 

weights, doesn’t go into component models …

 Heuristics based search …

Statistical (Machine Learning) I.1
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 heterogeneous technology stacks: estimated independently, 

sometimes using heuristics and different data

 Top level log-linear combination of feature functions setting feature 

weights

 Individual feature functions estimated independently, sometimes using 

heuristics and different data, not optimized by same objective function

 Only high level feature weight settings, does not go inside components

 No guarantee that this is in any way optimal …

 Works surprisingly/amazingly well in practice 

Statistical (Machine Learning) I.1
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Statistical (Machine Learning) I.1

 Not only MT …

 IE Information Extraction:

 RE based tokenizer

 CRF based POS tagger

 FST based morphology

 Max-entropy NER

 RE based chunker

 Transition based 

dependency  parser with 

SVM

 Perceptron-based semantic 

role labeler

 Clustering based relation 

classifier

 Graph-algorithm based NE 

disambiguator and linker

 Sentiment analysis 

component based on hand 

crafted sentiment lexica

 Alignment based textual 

entailment component

 …

 Similar for dialogue manager, 

QA and other complex NLP 

systems
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 heterogeneous technology stacks

 Motivation: best for each sub-task, compelling motivation (at first 

sight)

 Can have severe disadvantages:

 Difficult to 

Maintain

 Adapt 

 Scale

 Requires substantial interface and standardization overhead

 Worst: almost impossible to jointly optimize end-to-end

 No end-to-end training

 No guarantee that this is in any way optimal …

Statistical (Machine Learning) I.1
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Statistical (Machine Learning) II
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 A radically different approach

 Based on a “single” simple computing device 

 Artificial neural networks ANNs

 Can be scaled, stacked, cross-/inter-connected  = deep neural 

networks DNNs

 Supports end-to-end training

 Often text-to-text end-to-end

 Avoids extensive feature engineering (can learn some itself)

 Mix supervised with non-supervised approaches

 All components are jointly optimized against same (or multiple) 

objective(s)

 Base technology, judiciously add external knowledge

Statistical (Machine Learning) II
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 Another radically different approach

 What is the atom in linguistic computation?

 The word?

 Sub-word units: morphs?

 Why not just characters? 

 DFKI neural approaches to morphology and machine translation:

 Character based neural morphological tagging 

 Character based neural machine translation 

Statistical (Machine Learning) II
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 But:

 Many different types of NNs:

 Feed-forward

 Convolutional 

 Recurrent (with gates or LSTMs)

 With/without attention mechanisms …

 Which ones to use for what?

 Linguistically motivated subnetworks?

Statistical (Machine Learning) II
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DFKI Character based Morphological Tagging – Georg 

Heigold
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DFKI Character based Morphological Tagging – Georg 

Heigold
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LT as end-to-end text-to-text NN: NMT
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 DFKI NMT

 Character based

 Attention mechanism

BLEU WMT’16

PB-SMT 30.0

char-NMT 29.1 (single)

31.3 (ensemble)

Performance?

End-to-end



Character based Neural MT – Georg Heigold
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SMT: Hard Alignment
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Can the Net Explain Itself?
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Character based Neural MT – Georg Heigold
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Turkish – English WMT 2016



The Journey
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Take home messages?

 Linguistics, computational linguistics, HLT and NLP are 

“young” sciences

 Subject to “paradigm” shifts

 Move away from complex heterogeneous (and often 

incompatible) technology stacks to chains based on 

“uniform” base technology

 End-to-end, joint training against same objective(s)

 Lower barrier of entrance …?
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